Chem. Ber. 115, 1418 - 1424 (1982)

2,4,7-Cyclooctatrien-1-on

Herbert Meier*, Margret Lorch, Hermann Petersen und Hansjörg Gugel

Institut für Organische Chemie der Universität Tübingen, Auf der Morgenstelle 18, D-7400 Tübingen 1

Eingegangen am 24. August 1981

Auf dem Weg $3 \rightarrow 7 \rightarrow 10 \ (\rightarrow 12) \rightarrow 2$ gelingt die Synthese von 2,4,7-Cyclooctatrien-1-on (2). Das gekreuzt-konjugierte System isomerisiert thermisch sehr leicht zu 2,4,6-Cyclooctatrien-1-on (1). Auch für das photochemische Verhalten ist dieser Prozeß wichtig.

2,4,7-Cyclooctatrien-1-one

The synthesis of 2,4,7-cyclooctatrien-1-one (2) is performed on the route $3 \rightarrow 7 \rightarrow 10$ ($\rightarrow 12$) $\rightarrow 2$. The cross-conjugated system isomerizes thermally very smoothly to 2,4,6-cyclooctatrien-1-one (1). This process is also important for the photochemical behaviour.

Während 2,4,6-Cyclooctatrien-1-on (1) schon vor rund 30 Jahren synthetisiert wurde¹⁾, findet man das isomere System mit gekreuzter Konjugation, das 2,4,7-Cyclooctatrien-1-on (2), bis heute nicht in der Literatur²⁾ beschrieben.

Zur Herstellung von 2 sind wir von 1,5-Cyclooctadien (3) ausgegangen, das mit N-Bromsuccinimid (NBS) zweifach bromiert wird. Bereits der erste Austausch von Wasserstoff gegen Brom führt infolge der Allyl-Mesomerie zu einem Produktgemisch 8,9). Durch die Einführung des zweiten Broms wird der Reaktionsablauf erheblich kompliziert. Von den 48 denkbaren konstitutionsisomeren Dibromcyclooctadienen könnten hier immerhin 11 auftreten. Bei 8 davon ist zusätzlich die cis-trans-Isomerie zu diskutieren. Ein ¹³C-NMR-Spektrum des Rohprodukts zeigt in der Tat eine Fülle von Signalen, die auf mindestens 10 Verbindungen zurückgehen. Als Hauptprodukt (ca. 50%) erkennt man ein sterisch einheitliches 5,8-Dibrom-1,3-cyclooctadien (6). Das für die Synthese von 2 benötigte 3,7-Dibrom-1,5-cyclooctadien (7) ist ebenfalls eine wesentliche Komponente. Die Ausbeute bei der Isolierung von 7 hängt ganz entscheidend von der Methode ab, da die entstehenden Bromide unterschiedliche Empfindlichkeit für die gegenseitige Umwandlung und die Zersetzung aufweisen.

Die Umsetzung von 7 mit Silberacetat in wasserhaltigem Aceton führt zu einem Gemisch von Mono- und Diester, das säulenchromatographisch getrennt werden kann. Auch bei der nucleophilen Substitution ist für den S_N1-Fall die Allyl-Mesomerie zu berücksichtigen. In der Tat erhält man neben 8 und 9 noch das durch Verschiebung einer

© Verlag Chemie GmbH, D-6940 Weinheim, 1982 0009 – 2940/82/0404 – 1418 \$ 02.50/0

Doppelbindung entstehende Hauptprodukt 10 und Spuren eines Diesters mit der angenommenen Konstitution 11.

Tab. 1. Isolierte Dibromcyclooctadiene 6 und 7 bei der Reaktion von 1,5-Cyclooctadien (3) mit N-Bromsuccinimid

Methode	Ausbeuten (%)		Lit.
Destillation/Kristallisation	85	0.5-1	8)
Kristallisation (Ethanol, -30°C)		7	10)
Säulenchromatographie (Al ₂ O ₃ neutral, Pentan)		3	11)
Kristallisation (Ether, -80°C)		10	
Säulenchromatographie (Kieselgel, Petrolether 60-90°C)		23	

Das hier isolierte 3,7-Dibrom-1,5-cyclooctadien (7) hat *cis*-Konfiguration. Es ist identisch mit dem Produkt von *Mackenzie* et al. ¹¹⁾, für das eine Röntgenstrukturanalyse vorliegt. Der daraus gebildete Diester 9 wird als nahezu äquimolares *cis-trans*-Gemisch erhalten. Beim Monoester 10 dominiert dagegen eindeutig ein Isomeres, dem wir aufgrund des ¹H-NMR-Spektrums die *cis*-Konfiguration zuschreiben.

Zur Konstitutionsermittlung von 10 haben wir Mehrfachresonanzexperimente bei 400 MHz durchgeführt¹²⁾ (s. Formel). Bei höchstem Feld liegen die Protonen H¹ und H². Bei der Einstrahlung in ihre Frequenzen werden aus den komplexen Signalen von H³ und H⁴ zwei Dubletts mit Feinaufspaltung. Strahlt man umgekehrt z. B. in H³ ein,

Chem. Ber. 115 (1982)

so verschwindet im Hochfeldteil eine Kopplung von der Größenordnung 9.8 Hz. Das entspricht der trans-Stellung von H³ und H¹. Ganz ähnliche Resultate erhält man bei der Einstrahlung in H⁴. Daraus kann man ableiten, daß auch H⁴ und H¹ trans zueinander stehen, woraus die cis-Stellung der Substituenten OH und OAc folgt. Die beiden anderen vicinalen Kopplungen ${}^3J_{3,2}$ und ${}^3J_{4,2}$ sind klein, was auf einen Torsionswinkel nahe an 90° schließen läßt. Die geminale Kopplung ${}^2J_{1,2}$ beträgt rund 12.9 Hz. Bei Einstrahlung in die Frequenz von H² fällt diese Kopplung weg. Gleichzeitig erhalten die Signale von H³ und H⁴ Triplett-Struktur. Im Olefinteil des vollgekoppelten Spektrums findet man je vier Linien für die Protonen H⁵ und H⁶. Strahlt man z. B. in H³ ein, dann verschwindet die Kopplung ${}^3J_{3,5} = 5.6$ Hz; übrig bleibt für H⁵ ein Dublett mit der Kopplungskonstante ${}^3J_{5,7} = 11.0$ Hz. Erfaßt man bei der Einstrahlung in H⁴ auch die benachbarte Resonanzfrequenz von H³, dann wird das Signal von H⁶ zum Singulett. Die Protonen H9 und H¹0 ergeben im vollgekoppelten Spektrum je ein Signal aus fünf Linien, das man als Dublett von Tripletts ansehen kann. Strahlt man gleichzeitig in H¹ und H³ ein, dann entsteht daraus ein AB-System mit ${}^2J_{9,10} = 14.2$ Hz.

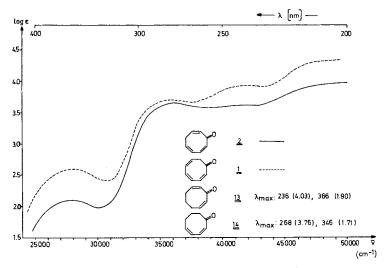


Abb.: UV-Spektren von 1 und 2 in *n*-Hexan (zum Vergleich die Absorptionsmaxima von 13 in Isooctan und 14 in Cyclohexan)

Bei der Oxidation von 10 mit Jones-Reagens bei $-25\,^{\circ}$ C erhält man den Ketoester 12 und das Keton 2 in Ausbeuten von 30 und 43%. Unter etwas schärferen Bedingungen läßt sich nur mehr 2 isolieren $^{13)}$. 2,4,7-Cyclooctatrien-1-on (2) ist ein gelbliches Öl, dessen UV-Spektrum sich nur wenig von dem von 1 unterscheidet (Abb.). Der längstwellige π - π *-Übergang ($\lambda = 277$ nm) ist bei 2 um rund 350 cm $^{-1}$ zu höheren Frequenzen verschoben, der n- π *-Übergang (bei $\lambda = 356$ nm) mit seinem Ausläufer in den sichtbaren Spektralbereich ist bei 2 um einen Faktor von ≈ 3.3 intensitätsschwächer als bei 1. Zum Vergleich sind in der Abbildung noch die Absorptionsmaxima der Cyclooctadienone 13^{14}) und 14^{15}) angegeben.

Im ¹H-NMR-Spektrum zeigt 1 für die CH₂-Gruppe ein Dublett bei $\delta=3.03$ mit ³J=8.2 Hz, 2 dagegen ein Triplett bei $\delta=2.86$ mit ³J=7.8 Hz. Der Olefinteil von 1 besteht aus vielen Linien zwischen $\delta=6.91$ und 6.24 und einem Dublett von Tripletts mit dem Zentrum bei $\delta=5.77$ für das Proton an C-7. Die Kopplung mit dem benachbarten olefinischen Proton beträgt ³J=10.6 Hz. In 2 absorbieren die olefinischen Protonen als komplexes Multiplett zwischen $\delta=6.7$ und 6.1. Bei Raumtemperatur zeigen beide Cyclooctatrienone eine im Sinn der NMR-Zeitskala schnelle Ringinversion ¹⁶⁾. Die ¹³C-NMR-Daten von 1, 2 und den bei der Synthese von 2 isolierten Stufen sind in Tab. 2 zusammengefaßt.

Tab. 2. ¹³C-NMR-Spektren der Achtringverbindungen 1, 2, 6, 7, 9, 10 und 12 (δ-Werte, gemessen in CDCl₃, TMS als int. Standard)

Verbindung	СО	olefin. C	CH-Subst.	CH ₂	CH ₃
1	191.9	138.0, 137.0, 133.4, 130.0, 129.6, 126.4	-	43.6	-
2	192.5	141.8, 136.2, 134.3, 134.0, 133.5, 128.0	_	28.2	-
6 Br	_	124.1, 133.9	49.0	32.4	-
7 Br OCOCH	-	126.8, 132.1	47.0	36.4	-
ососн ₃	170.2 170.1	126.4, 130.3 125.2, 130.5	71.4 72.2	31.7 33.7	21.2 21.2
9 (cis und trans) OH OCOCH3	170.2	134.7, 131.6, 130.1, 129.3	68.2 (C-3) 71.0 (C-1)	40.5 (C-2), 27.7 (C-6)	21.2
10 (cis) 12	199.0 (CO), 169.9 (OCO)	142.0 (C-7), 128.6 (C-8), 132.9, 131.0	66.8	47.2 (C-2), 27.0 (C-6)	21.2

2,4,7-Cyclooctatrien-1-on (2) wandelt sich in reiner Form oder in Lösung thermisch leicht in das isomere Keton 1 um. Das gekreuzt-konjugierte System geht dabei in das energieärmere linear-konjugierte System über. Die Enolform 15 mit formaler cyclischer Konjugation spielt im Gleichgewicht keine Rolle¹⁷⁾. Die ¹H-NMR-spektroskopische Verfolgung des Prozesses $2 \rightarrow 1$ in CDCl₃ ergibt Halbwertszeiten von 1, 1.5 und 2.5 Stunden bei 60, 50 bzw. 40 °C.

Die Einstrahlung in den π - π *-Übergang und/oder in den n- π *-Übergang von 2 (Pyrexfilter: $\lambda \ge 290$ nm, Uranylglasfilter: $\lambda \ge 330$ nm; vgl. Abb.) führt zu relativ komplexen Photoreaktionen, über die an späterer Stelle berichtet werden soll. Hier sei lediglich auf den Zusammenhang mit der thermischen Isomerisierung eingegangen.

Chem. Ber. 115 (1982)

H H···O

2

15

OH

$$h\nu$$
 $h\nu$
 $h\nu$

In Methanol mit Pyrexfilter erhält man als Hauptprodukt (30%) den Ester 18 mit all-trans-Konfiguration. 18 entsteht auch durch Methanol-Addition aus $1^{19,20}$. Es öffnet sich zunächst photochemisch der Achtring zu dem Keten 16. Dieses addiert Methanol unter Bildung eines Methylesters 17, der sich dann photochemisch zur thermodynamisch stabilsten all-trans-Konfiguration äquilibriert. Die einfachste Erklärung für die Entstehung von 18 wäre eine thermische Isomerisierung $2 \rightarrow 15 \rightarrow 1$ und dann die Photoreaktion zu 18. Damit nicht in Einklang zu bringen ist jedoch die rasche Bildung von 17, die bei der Photolyse bei 15°C wesentlich schneller erfolgt, als es der Halbwertszeit der thermischen Isomerisierung entspricht. Man muß daher annehmen, daß der Prozeß $2 \rightarrow 1$ nicht nur im Grundzustand sondern auch im elektronisch angeregten Zustand, vermutlich in dem durch direkte Einstrahlung bzw. internal conversion entstandenen n, π^* -Zustand n0, ablaufen kann. Es gibt eine ganze Reihe von Beispielen für solche photochemischen Doppelbindungsverschiebungen über Sechsring-Übergangszustände zu n0, n1, ungesättigten Ketonen n2. Außergewöhnlich ist also die glatte thermische Isomerisierung.

Für die Unterstützung dieser Arbeit danken wir der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie.

Experimenteller Teil

UV-Spektren: In *n*-Hexan, C. Zeiss, DMR 10. – IR-Spektren: In KBr oder in reiner Form, Perkin-Elmer-Spektrometer 21. – ¹H-NMR- und ¹³C-NMR-Spektren: In CDCl₃ (TMS als interner Standard), Geräte WP 80, WH 90 und WH 400 der Firma Bruker. – Massenspektren: 70 eV Ionisierungsenergie, Gerät MAT 711 A der Fa. Varian. – Schmelz- und Siedepunkte: Unkorrigiert.

cis-3,7-Dibrom-1,5-cyclooctadien (7): 20 ml (162 mmol) 1,5-Cyclooctadien (3) werden mit 62 g (350 mmol) N-Bromsuccinimid in 600 ml über P_2O_5 getrocknetem Tetrachlormethan unter Rückfluß erhitzt. Zu Beginn und während der 11stdg. Reaktionszeit setzt man geringe Mengen Dibenzoylperoxid zu. Das entstehende Succinimid wird abgesaugt, mit etwas CCl₄ gewaschen und das Filtrat bei 30 °C vom Lösungsmittel befreit. (Das Rohprodukt wurde 1 H- und 13 C-NMR-spektroskopisch auf seine Bestandteile untersucht und dann 7 abgetrennt.)

- a) Tieftemperaturkristallisation: Das Rohprodukt wird in 200 ml Ether aufgenommen und bei $-80\,^{\circ}$ C zur Kristallisation gebracht. Es fällt selektiv das Dibromid 7 aus. Ausb. 4.25 g (10%), Schmp. 121 °C.
- b) Säulenchromatographie: Die Trennung des Gemisches erfolgt an einer Kieselgelsäule (60×6 cm) mit Petrolether (60-90 °C). Das Kieselgel färbt sich tiefschwarz, trotzdem isoliert man nach zwei Vorfraktionen die farblose Verbindung 7. Ausb. 9.9 g (23%). Durch Umkristallisation aus Ethanol erhält man lange Nadeln, die bei 123 °C schmelzen (Lit.-Schmp. 122-123 °C).

Umsetzung von 7 mit Silberacetat: Zu einer Lösung von 3.2 g (12.0 mmol) 7 in 100 ml wasserhaltigem Aceton gibt man 4.0 g (24.0 mmol) frisch gefälltes Silberacetat und rührt ca. 10 h bei Raumtemp. Danach wird das ausgefallene Silberbromid abfiltriert, das Lösungsmittel abgezogen und das Reaktionsgut an einer Kieselgelsäule (100 × 4 cm) mit Toluol/Ether (2:1) chromatographiert. Als erste Fraktion erhält man den Diester 9, der laut NMR-Spektrum mit einer Spur 4,7-Cyclooctadien-1,3-diol-diacetat (11) verunreinigt ist, die man durch Destillation entfernen kann. Als zweite Fraktion eluiert man 1.168 g (53%) Monoester 8 und 10 (1:9.6). Durch fraktionierende Destillation erhält man die reine Verbindung 10.

2,6-Cyclooctadien-1,5-diol-diacetat (9): Ausb. 780 mg (29%), Sdp. 93 – 95 °C/0.02 Torr. – IR (reine Phase): 1725 (CO), 1370, 1220, 1017 cm⁻¹. – 1 H-NMR (CDCl₃): δ = 5.5/5.7 (m, 6H), 2.7 (m, 4H, CH₂), 2.06/2.04 (s/s, 6H, CH₃). – MS (FD): m/e = 224 (M $^{+}$ *).

C₁₂H₁₆O₄ (224.3) Ber. C 64.27 H 7.19 O 28.54 Gef. C 64.50 H 7.28 O 28.22

cis-4,7-Cyclooctadien-1,3-diol-monoacetat (10): Ausb. 1.058 g (48%), Sdp. 108 °C/0.04 Torr. − IR (reine Phase): 3390 (OH), 1715 (CO), 1370, 1240, 1060, 1020, 740, 720 cm⁻¹. − MS (70 eV): m/e = 182 ($\leq 1\%$, M^{+*}), 122 (55, M − CH₃CO₂H^{\uparrow +*}), 93 (30), 91 (33), 79 (38), 70 (69), 43 (100).

C₁₀H₁₄O₃ (182.2) Ber. C 65.92 H 7.74 O 26.34 Gef. C 65.65 H 7.87 O 26.48

Oxidation von 10: Zu einer Lösung von 1.534 g (8.43 mmol) 10 in 20 ml Aceton werden bei $-25\,^{\circ}\text{C}$ 2.1 ml 4 N Jones-Reagenz²³⁾ langsam unter Rühren zugetropft. Man kontrolliert anhand der Dünnschichtchromatographie den Reaktionsablauf, gibt am Ende 25 g zerstoßenes Eis zu und extrahiert dreimal mit je 25 ml Dichlormethan. Die vereinigten organischen Phasen werden gründlich mit kaltem Wasser gewaschen, über MgSO₄ getrocknet und bei 0°C vom Solvens befreit. Das zurückbleibende Gemisch (1.3 g) wird an einer gekühlten Kieselgelsäule (80 × 3.5 cm) mit Toluol/Ether (10:1) getrennt. Die erste Fraktion besteht aus dem Keton 2, die zweite Fraktion aus dem Ketoester 12. (12 und 2 sind thermisch empfindlich. Führt man die Reaktion und die Aufarbeitung weniger schonend durch, so isoliert man hauptsächlich 1, das bei der Chromatographie etwas schneller eluiert wird als 2.)

7-Acetoxy-2,5-cyclooctadien-I-on (12): Ausb. 455 mg (30%), Schmp. 46 – 47 °C. – IR (KBr): 1725 (OCO), 1655 (CO), 1240, 1227, 1015, 785 cm $^{-1}$. – 1 H-NMR (CDCl $_{3}$): δ = 6.59 (q von d, 1 H, 3-H, 3 J = 12.0, 7.9, 6.2 Hz), 6.02 (d von d, 1 H, 2-H, 3 J = 12.0 Hz, 4 J = 1.9 Hz), 5.9 – 5.2 (m, 3 H, 7-H, 6-H, 5-H), 3.4 – 2.9 (m, 4 H), 2.07 (s, 3 H, CH $_{3}$). – MS (70 eV): m/e = 180 (1%, M $^{+}$ *), 138 (60, M – 2 C₂H₂O $^{\uparrow}$ +*), 120 (78, M – CH $_{3}$ CO₂H $^{\uparrow}$ +*), 95 (75), 91 (92), 82 (43), 43 (100). 2 C₁₀H₁₂O₃ (180.2) Ber. C 66.65 H 6.71 O 26.64 Gef. C 66.61 H 6.88 O 26.51

2,4,7-Cyclooctatrien-1-on (2): Ausb. 432 mg (43%), gelbes Öl, nicht ohne Zersetzung destillierbar. – MS (70 eV): m/e = 120 (56%, M+*), 92 (29, M – CO $^{-+}$ *), 91 (100, C₇H₇+), 78 (21, C₆H₆+*); zur übrigen spektroskopischen Charakterisierung vgl. den theoretischen Teil.

C₈H₈O (120.2) Ber. C 79.94 H 6.71 O 13.35 Gef. C 80.11 H 6.59 O 13.30

Chem. Ber. 115 (1982)

Thermische Isomerisierung 2 → 1: Zur Messung der Halbwertszeiten wurde die thermische Isomerisierung des Ketons 2 in CDCl₃ bei 40, 50 und 60°C ¹H-NMR-spektroskopisch verfolgt. Ein präparatives Experiment in reiner Phase bei 50°C zeigte ebenfalls eine praktisch quantitative Umwandlung. Aus 240 mg 2 erhält man 225 mg reines 1, das durch Vergleich der IR- und ¹H-NMR-Spektren mit denen einer authentischen Probe identifiziert wurde.

Photolyse von 2 in Methanol: 120 mg (1.0 mmol) 2 werden in 120 ml Methanol unter Stickstoff mit einer 450-W-Hg-Mitteldrucklampe (Hanovia) durch ein Pyrexfilter belichtet. Man kontrolliert dünnschichtchromatographisch den Reaktionsablauf, zieht anschließend das Solvens im Rotationsverdampfer ab und versetzt den Rückstand mit Petrolether (30-50°C). Im Tiefkühlschrank erhält man daraus 45 mg (30%) (2E,4E,6E)-2,4,6-Octatriensäure-methylester (18). Schmp. 74°C (aus n-Pentan).

2) Es existieren lediglich einige Homotropolone $^{3-7}$).

5) M. Oda, S. Miyakoshi, S. Nakanishi und Y. Kitahara, Chem. Lett. 1976, 215. 6) T. R. Kowar und E. LeGoff, J. Org. Chem. 41, 3760 (1976).

⁷⁾ H. Meier und T. Echter, Angew. Chem., im Druck.

9) S. Moon und C. R. Ganz, J. Org. Chem. 35, 1241 (1970).

¹²⁾ Für diese Messungen danken wir Herrn H. Kolshorn.

E. W. Garbisch jr., J. Org. Chem. 30, 2109 (1965).
 G. L. Lange und E. Neidert, Can. J. Chem. 51, 2207 (1973).

[312/81]

¹⁾ A. C. Cope und B. D. Tiffany, J. Am. Chem. Soc. 73, 4158 (1951).

³⁾ Y. Kitahara, M. Oda und S. Miyakoshi, Tetrahedron Lett. 1975, 4141.
4) Y. Kitahara, M. Oda, S. Miyakoshi und S. Nakanishi, Tetrahedron Lett. 1975, 4145.

⁸⁾ A. C. Cope und F. Hochstein, J. Am. Chem. Soc. 72, 2510 (1950).

¹⁰⁾ E. Cuthbertson und D. D. MacNicol, J. Chem. Soc., Perkin Trans. 1 1974, 1893.

¹¹⁾ R. K. Mackenzie, D. D. MacNicol, H. H. Mills, R. A. Raphael, F. B. Wilson und J. A. Zabkiewicz, J. Chem. Soc., Perkin Trans. 2 1972, 1632.

¹³⁾ Mit Amberlyst-CrO₃ in Chloroform sind die Ausbeuten an 12 und 2 geringer.

¹⁶⁾ Zur Ringinversion von 1 vgl. C. Ganter, S. M. Pokras und J. D. Roberts, J. Am. Chem. Soc. 88, 4235 (1966).

¹⁷⁾ Mit 1 im thermischen Gleichgewicht steht allerdings das Bicyclo[4.2.0]octa-2,4-dien-7-on (6.6% bei 60°C) 18).

¹⁸⁾ R. Huisgen, G. Boche, A. Dahmen und W. Hechtl, Tetrahedron Lett. 1968, 5215; R. Huisgen, F. Mietzsch, G. Boche und H. Seidl, Chem. Soc., Spec. Publ. No. 19, 3 (1965); Angew. Chem. 77, 353 (1965); Angew. Chem., Int. Ed. Engl. 4, 368 (1965).

¹⁹⁾ G. Büchi und E. M. Burgess, J. Am. Chem. Soc. 84, 3104 (1962).

²⁰⁾ L. L. Barber, O. L. Chapman und J. D. Lassila, J. Am. Chem. Soc. **91**, 531 (1969).

²¹⁾ Vgl. dazu J. Gloor, K. Schaffner und O. Jeger, Helv. Chim. Acta 54, 1864 (1971).

²²⁾ Vgl. z. B. U. Timm, K.-P. Zeller und H. Meier, Chem. Ber. 111, 1549 (1978).

²³⁾ A. Bowers, T. G. Halsall, E. R. H. Jones und H. J. Lemin, J. Chem. Soc. 1953, 2548.